Chromatin and epigenetic regulation of pre-mRNA processing
نویسندگان
چکیده
منابع مشابه
Chromatin and epigenetic regulation of pre-mRNA processing.
New data are revealing a complex landscape of gene regulation shaped by chromatin states that extend into the bodies of transcribed genes and associate with distinct RNA elements such as exons, introns and polyadenylation sites. Exons are characterized by increased levels of nucleosome positioning, DNA methylation and certain histone modifications. As pre-mRNA splicing occurs co-transcriptional...
متن کاملRegulation of pre-mRNA processing by src
BACKGROUND Changes in gene expression in response to external signals provide a key mechanisms for the regulation of higher eukaryotic cell functions. The importance of transcriptional control in the response of cells to growth factors and cytokines has been extensively documented, but gene expression has also been shown to be controlled at other levels, such as the stability of mRNA in the cyt...
متن کاملMolecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation
Messenger RNA (mRNA) 3' end formation is a nuclear process through which all eukaryotic primary transcripts are endonucleolytically cleaved and most of them acquire a poly(A) tail. This process, which consists in the recognition of defined poly(A) signals of the pre-mRNAs by a large cleavage/polyadenylation machinery, plays a critical role in gene expression. Indeed, the poly(A) tail of a matur...
متن کاملCoordination between transcription and pre-mRNA processing.
A large body of work has proved that transcription by RNA polymerase II and pre-mRNA processing are coordinated events within the cell nucleus. Capping, splicing and polyadenylation occur while transcription proceeds, suggesting that RNA polymerase II plays a role in the regulation of these events. The presence and degree of phosphorylation of the carboxy-terminal domain of RNA polymerase II la...
متن کاملEpigenetic regulation of chromatin structure and gene function by biotin.
Covalent modifications of histones are a crucial component of epigenetic events that regulate chromatin structures and gene function. Evidence exists that distinct lysine residues in histones are modified by covalent attachment of the vitamin biotin, catalyzed by biotinidase and holocarboxylase synthetase. Biotinylation of histones appears to be conserved across species. The following biotinyla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Human Molecular Genetics
سال: 2012
ISSN: 0964-6906,1460-2083
DOI: 10.1093/hmg/dds353